Cortical transformation of wide-field (multiwhisker) sensory responses.
نویسندگان
چکیده
In the barrel cortex of rodents, cells respond to a principal whisker (PW) and more weakly to several adjacent whiskers (AWs). Here we show that compared with PW responses, simultaneous wide-field stimulation of the PW and several AWs enhances short-latency responses and suppresses long-latency responses. Multiwhisker enhancement and suppression is first seen at the level of the cortex in layer 4 and not in the ventroposterior medial thalamus. Within the cortex, enhancement is manifested as a reduction in spike latency in layer 4 but also as an increase in spike probability in layer 2/3. Intracellular recordings revealed that multiwhisker enhancement of short-latency responses is caused by synaptic summation that can be explained by synaptic cooperativity (i.e., convergence of synaptic inputs activated by different whiskers). Conversely, multiwhisker suppression of long-latency responses is due to increased recruitment of inhibition in cortical cells. Interestingly, the ability to differentiate multiwhisker and PW responses is lost during rapid sensory adaptation caused by high-frequency whisker stimulation. The results reveal that simultaneous and temporally dispersed wide-field sensory inputs are discriminated at the level of single cells in barrel cortex with high temporal resolution, but the ability to compute this difference is highly dynamic and dependent on the level of adaptation in the thalamocortical network.
منابع مشابه
Vibrissa sensation in superior colliculus: wide-field sensitivity and state-dependent cortical feedback.
Rodents use their vibrissae (whiskers) to sense and navigate the environment. A main target of this sensory information is the superior colliculus in the midbrain, which rats can use to detect meaningful whisker stimuli in behavioral contexts. Here, we used field potential, single-unit, and intracellular recordings to show that, although cells in the intermediate layers of the superior collicul...
متن کاملNonlinear processing of tactile information in the thalamocortical loop.
Rats explore tangible objects in a manner such that, at any given moment in time, multiple facial whiskers simultaneously contact the surface of the object. Although both thalamic and cortical neurons responsible for processing such tactile information have large, multiwhisker receptive fields, it remains unclear what kinds of computations can be carried out by these neuronal populations when b...
متن کاملRAPID COMMUNICATION Nonlinear Processing of Tactile Information in the Thalamocortical Loop
Ghazanfar, Asif A. and Miguel A. L. Nicolelis. Nonlinear prorons following stimulation of single-whisker versus coincicessing of tactile information in the thalamocortical loop. J. Neurodentally displaced multiwhisker stimuli. physiol. 78: 506–510, 1997. Rats explore tangible objects in a manner such that, at any given moment in time, multiple facial M E T H O D S whiskers simultaneously contac...
متن کاملOrigins of cortical layer V surround receptive fields in the rat barrel cortex.
Layer IV of the barrel cortex contains an anatomical map of the contralateral whisker pad, which serves as a useful reference in relating receptive field properties of cells to the cortical columns in which they reside. Recent studies have shown that the degree to which the surround receptive fields of layer IV cells are generated intracortically or subcortically depends on whether they lie in ...
متن کاملEffect of locus ceruleus phasic electrical stimulation on responses of barrel cortical cells to controlled mechanical displacement in rats
Behavioral and electrophysiological evidences have shown that locus ceruleus (LC) is involved in different tasks including modulation of sensory processing and shift of attention. In the present study, single unit responses of barrel cortical cells was recorded following controlled mechanical displacement of the principal and peripheral vibrissae in adult rats (100 trials of 200 µm deflection f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 100 1 شماره
صفحات -
تاریخ انتشار 2008